Compare 3D Printing Materials

Explore and compare 3D printing materials to find the best fit for your project. From durable plastics to flexible resins, our guide highlights key properties like strength, flexibility, and surface finish, helping you choose the right material for prototyping, production, or custom parts.

  • PEEK 3D printing plastic material for high-performance additive manufacturing — durable, heat-resistant, and precision material for engineering prototypes and functional components.

    PEEK

    Process:

    Corrosion Resistance, Strength, Temperature Resistant

    PEEK (Polyether Ether Ketone) is a high-performance engineering plastic widely used in aerospace, automotive, medical, and electronics industries. As a material that is resistant to high temperatures, chemical corrosion, and wear, PEEK offers exceptional strength and rigidity in 3D printing, making it suitable for demanding functional parts. It can withstand temperatures exceeding 250°C and maintain stable performance under high loads and extreme conditions. PEEK also has excellent electrical insulation properties and biocompatibility, making it an ideal choice for medical implants and high-end industrial components.

  • PETG 3D printing plastic material for additive manufacturing — durable, transparent, and high-strength filament for prototyping and functional 3D printed components.

    PETG

    Process: FDM

    Durability, Strength

    PETG (Polyethylene Terephthalate Glycol) is a 3D printing material that combines strength and toughness, offering the advantages of PLA’s ease of printing and ABS’s durability. It has excellent impact resistance and chemical stability, along with good transparency and a smooth surface finish. PETG has high-temperature resistance, making it ideal for producing functional parts, mechanical components, and durable prototypes. During printing, it experiences minimal shrinkage and warping, making it a reliable choice for home, education, and industrial applications.

  • Black PLA 3D printing plastic material for additive manufacturing — high-quality filament for prototyping and functional 3D printed components.

    PLA

    Process: FDM

    Durability, Biodegradable, RichColors, Economical

    PLA is a high-quality, high-performance, and cost-effective 3D printing material, offering excellent layer adhesion and impact resistance, resulting in durable and long-lasting prints. The base series comes in up to 30 colors, ensuring uniform color consistency and stable printing quality. PLA is made from renewable plant-based resources, eco-friendly, non-toxic, and biodegradable. It is reliable, easy to use, and provides high cost-performance with a wide range of colors, making it an ideal choice for home, education, and industrial printing.

  • Tough resin 3D printing plastic material for additive manufacturing — durable, high-strength filament for functional prototypes and 3D printed components.

    Tough Resin

    Process: SLA

    Durability, Strength

    3D printing tough resin material is designed for printing projects that require high durability and impact resistance. It offers excellent mechanical properties, capable of withstanding high pressure and severe impact, while maintaining precise printing details. Whether creating prototypes, functional parts, or industrial applications, the tough resin provides an ideal balance—finding the sweet spot between strength and flexibility.

  • PC-like advanced temperature 3D printing plastic material for additive manufacturing — high-performance filament designed for heat-resistant and durable 3D printed components.

    PC-Like Advanced Temp

    Process: SLA

    Temperature Resistance, Strength, Stiffness

    PC-Like Advanced High Temp is a high-temperature reinforced material with properties similar to polycarbonate, specifically designed for functional parts that require a combination of high strength, stiffness, and heat resistance. Post-curing can further increase the heat deflection temperature of the parts, enhancing their stability and reliability in high-temperature environments. It should be noted that post-curing may reduce some aspects of durability, so a balance between strength and toughness should be considered during design.

  • Ceramic-like 3D printing plastic material for additive manufacturing — high-strength, durable filament for functional prototypes and 3D printed components.

    Ceramic-Like

    Process: SLA

    Heat Resistance, Strength, Stiffness

    The high-temperature reinforced ceramic white combines exceptional heat resistance with outstanding strength and stiffness, making it an ideal choice for functional parts and high-performance prototypes. Post-curing further enhances its mechanical properties and thermal stability, providing reliable performance for complex geometries. Whether for aerospace, precision molds, electronic insulators, or laboratory equipment, this ceramic material meets the highest standards under demanding conditions, delivering solid support for innovative designs and high-performance manufacturing.

  • PA+GF

    Process: SLS or MJF

    Temperature Resistance, Durability, Dimensional Stability

    PA+GF is a polyamide powder material reinforced with glass beads, which significantly improves stiffness and dimensional stability. Compared with unfilled polyamide, this material offers higher heat resistance and demonstrates excellent long-term wear performance. However, due to the addition of glass, its impact strength and tensile strength are relatively lower than those of other nylons.

  • PA-Like

    Process: SLS or MJF

    Durability, Temperature Resistant

    Nylon is a high-performance engineering polymer with well-balanced properties. It offers high strength, excellent toughness, and outstanding wear resistance, along with superior chemical resistance and thermal stability, ensuring reliable performance even under demanding conditions. Thanks to its lightweight and high reliability, nylon materials are widely used in automotive, medical, aerospace, and consumer products, making them an ideal choice for applications requiring both functionality and durability.

  • ABS plastic 3D printing material for durable, high-strength, and precise 3D printed parts

    ABS-Like

    Process: FDM or SLA

    Moisture Resistance, Durability

    ABS-like material is a durable and versatile prototyping material suitable for producing both functional and aesthetic parts. Its front surface is smooth, while the side walls and bottom have a matte finish, giving parts an appearance similar to injection-molded components. The material offers good dimensional stability, moisture resistance, and is easy to post-process, making it ideal for rapid prototyping and functional testing.It is usually available in black and white.

  • Inconel 718 metal powder for 3D printing

    Inconel 718

    Process: SLM

    Fatigue Resistant, Temperature Resistance, Corrosion Resistance, Strength

    Inconel 718 is known for its outstanding high-temperature strength, creep resistance, and corrosion resistance. The material can withstand operating temperatures above 700°C while maintaining excellent fatigue and fracture resistance. Through additive manufacturing, GH4169 can produce parts with complex geometries and is widely used in aerospace engines, gas turbines, high-temperature molds, and high-performance industrial components.
    Disadvantages: High cost; complex heat treatment process; thin-walled structures require careful design; default surface roughness Ra10–12.