Compare 3D Printing Materials

Explore and compare 3D printing materials to find the best fit for your project. From durable plastics to flexible resins, our guide highlights key properties like strength, flexibility, and surface finish, helping you choose the right material for prototyping, production, or custom parts.

  • Black PLA 3D printing plastic material for additive manufacturing — high-quality filament for prototyping and functional 3D printed components.

    PLA

    Process: FDM

    Durability, Biodegradable, RichColors, Economical

    PLA is a high-quality, high-performance, and cost-effective 3D printing material, offering excellent layer adhesion and impact resistance, resulting in durable and long-lasting prints. The base series comes in up to 30 colors, ensuring uniform color consistency and stable printing quality. PLA is made from renewable plant-based resources, eco-friendly, non-toxic, and biodegradable. It is reliable, easy to use, and provides high cost-performance with a wide range of colors, making it an ideal choice for home, education, and industrial printing.

  • PC-like translucent 3D printing plastic material for additive manufacturing — high-quality filament offering transparency, durability, and precise 3D printed components.

    PC-Like Translucent

    Process: SLA

    Transparency, Stiffness

    PC-like translucent material combines excellent translucency with high stiffness, making it an ideal choice for precision components. Through customized post-processing, functional light-transmitting effects can be achieved, delivering both aesthetic appeal and performance. With high tensile strength and modulus, this material is especially suited for creating functional prototypes that emulate injection-molded polycarbonate, meeting the dual demands of mechanical performance and visual quality for engineering prototypes and small-batch production.

  • PC-like advanced temperature 3D printing plastic material for additive manufacturing — high-performance filament designed for heat-resistant and durable 3D printed components.

    PC-Like Advanced Temp

    Process: SLA

    Temperature Resistance, Strength, Stiffness

    PC-Like Advanced High Temp is a high-temperature reinforced material with properties similar to polycarbonate, specifically designed for functional parts that require a combination of high strength, stiffness, and heat resistance. Post-curing can further increase the heat deflection temperature of the parts, enhancing their stability and reliability in high-temperature environments. It should be noted that post-curing may reduce some aspects of durability, so a balance between strength and toughness should be considered during design.

  • Ceramic-like 3D printing plastic material for additive manufacturing — high-strength, durable filament for functional prototypes and 3D printed components.

    Ceramic-Like

    Process: SLA

    Heat Resistance, Strength, Stiffness

    The high-temperature reinforced ceramic white combines exceptional heat resistance with outstanding strength and stiffness, making it an ideal choice for functional parts and high-performance prototypes. Post-curing further enhances its mechanical properties and thermal stability, providing reliable performance for complex geometries. Whether for aerospace, precision molds, electronic insulators, or laboratory equipment, this ceramic material meets the highest standards under demanding conditions, delivering solid support for innovative designs and high-performance manufacturing.

  • Inconel 718 metal powder for 3D printing

    Inconel 718

    Process: SLM

    Fatigue Resistant, Temperature Resistance, Corrosion Resistance, Strength

    Inconel 718 is known for its outstanding high-temperature strength, creep resistance, and corrosion resistance. The material can withstand operating temperatures above 700°C while maintaining excellent fatigue and fracture resistance. Through additive manufacturing, GH4169 can produce parts with complex geometries and is widely used in aerospace engines, gas turbines, high-temperature molds, and high-performance industrial components.
    Disadvantages: High cost; complex heat treatment process; thin-walled structures require careful design; default surface roughness Ra10–12.