Compare 3D Printing Materials

Explore and compare 3D printing materials to find the best fit for your project. From durable plastics to flexible resins, our guide highlights key properties like strength, flexibility, and surface finish, helping you choose the right material for prototyping, production, or custom parts.

  • Flame retardant 3D printing resin for additive manufacturing — high-performance plastic material designed for fire-resistant and durable 3D printed components.

    Flame Retardant Resin

    Process: LCD

    Flame Resistance

    Flame-retardant resin is a high-performance material formulated with specialized additives to significantly reduce flammability and slow down flame propagation. While maintaining excellent mechanical strength and processability, it meets stringent fire safety standards. Ideal for electronics enclosures, aerospace components, transportation parts, and other applications requiring superior fire resistance, this resin enables precise 3D printing of complex geometries while ensuring reliable performance under high temperatures and flame exposure.

  • Ceramic-like 3D printing plastic material for additive manufacturing — high-strength, durable filament for functional prototypes and 3D printed components.

    Ceramic-Like

    Process: SLA

    Heat Resistance, Strength, Stiffness

    The high-temperature reinforced ceramic white combines exceptional heat resistance with outstanding strength and stiffness, making it an ideal choice for functional parts and high-performance prototypes. Post-curing further enhances its mechanical properties and thermal stability, providing reliable performance for complex geometries. Whether for aerospace, precision molds, electronic insulators, or laboratory equipment, this ceramic material meets the highest standards under demanding conditions, delivering solid support for innovative designs and high-performance manufacturing.

  • 17-4PH stainless steel 3D printing metal material for additive manufacturing — high-strength, corrosion-resistant metal for precision 3D printed components.

    Stainless Steel 17-4PH

    Process: SLM

    Corrosion Resistance, HighStrength, Wear Resistant

    17-4 PH stainless steel is a precipitation-hardening stainless steel known for its excellent hardness and corrosion resistance. Through vacuum solution heat treatment and H900 aging treatment, printed parts can achieve high strength, high hardness, and good wear resistance. 17-4 PH stainless steel is suitable for manufacturing industrial components that require high strength, corrosion resistance, and complex structures, such as aerospace parts, molds, and high-load machinery.
    Disadvantages: Low elongation (≤16% after heat treatment); weak magnetism after heat treatment.

  • TPU

    Process: SLS

    Impact Resistance, Wear Resistance, Toughness

    TPU is a flexible and highly tough filament with excellent impact resistance and wear resistance. It is suitable for printing various production prototypes and functional parts that need to withstand impact, drops, and collisions.