Compare 3D Printing Materials

Explore and compare 3D printing materials to find the best fit for your project. From durable plastics to flexible resins, our guide highlights key properties like strength, flexibility, and surface finish, helping you choose the right material for prototyping, production, or custom parts.

  • PEEK 3D printing plastic material for high-performance additive manufacturing — durable, heat-resistant, and precision material for engineering prototypes and functional components.

    PEEK

    Process:

    Corrosion Resistance, Strength, Temperature Resistant

    PEEK (Polyether Ether Ketone) is a high-performance engineering plastic widely used in aerospace, automotive, medical, and electronics industries. As a material that is resistant to high temperatures, chemical corrosion, and wear, PEEK offers exceptional strength and rigidity in 3D printing, making it suitable for demanding functional parts. It can withstand temperatures exceeding 250°C and maintain stable performance under high loads and extreme conditions. PEEK also has excellent electrical insulation properties and biocompatibility, making it an ideal choice for medical implants and high-end industrial components.

  • Black PLA 3D printing plastic material for additive manufacturing — high-quality filament for prototyping and functional 3D printed components.

    PLA

    Process: FDM

    Durability, Biodegradable, RichColors, Economical

    PLA is a high-quality, high-performance, and cost-effective 3D printing material, offering excellent layer adhesion and impact resistance, resulting in durable and long-lasting prints. The base series comes in up to 30 colors, ensuring uniform color consistency and stable printing quality. PLA is made from renewable plant-based resources, eco-friendly, non-toxic, and biodegradable. It is reliable, easy to use, and provides high cost-performance with a wide range of colors, making it an ideal choice for home, education, and industrial printing.

  • PC-like translucent 3D printing plastic material for additive manufacturing — high-quality filament offering transparency, durability, and precise 3D printed components.

    PC-Like Translucent

    Process: SLA

    Transparency, Stiffness

    PC-like translucent material combines excellent translucency with high stiffness, making it an ideal choice for precision components. Through customized post-processing, functional light-transmitting effects can be achieved, delivering both aesthetic appeal and performance. With high tensile strength and modulus, this material is especially suited for creating functional prototypes that emulate injection-molded polycarbonate, meeting the dual demands of mechanical performance and visual quality for engineering prototypes and small-batch production.

  • PC-like advanced temperature 3D printing plastic material for additive manufacturing — high-performance filament designed for heat-resistant and durable 3D printed components.

    PC-Like Advanced Temp

    Process: SLA

    Temperature Resistance, Strength, Stiffness

    PC-Like Advanced High Temp is a high-temperature reinforced material with properties similar to polycarbonate, specifically designed for functional parts that require a combination of high strength, stiffness, and heat resistance. Post-curing can further increase the heat deflection temperature of the parts, enhancing their stability and reliability in high-temperature environments. It should be noted that post-curing may reduce some aspects of durability, so a balance between strength and toughness should be considered during design.

  • Flame retardant 3D printing resin for additive manufacturing — high-performance plastic material designed for fire-resistant and durable 3D printed components.

    Flame Retardant Resin

    Process: LCD

    Flame Resistance

    Flame-retardant resin is a high-performance material formulated with specialized additives to significantly reduce flammability and slow down flame propagation. While maintaining excellent mechanical strength and processability, it meets stringent fire safety standards. Ideal for electronics enclosures, aerospace components, transportation parts, and other applications requiring superior fire resistance, this resin enables precise 3D printing of complex geometries while ensuring reliable performance under high temperatures and flame exposure.

  • Ceramic-like 3D printing plastic material for additive manufacturing — high-strength, durable filament for functional prototypes and 3D printed components.

    Ceramic-Like

    Process: SLA

    Heat Resistance, Strength, Stiffness

    The high-temperature reinforced ceramic white combines exceptional heat resistance with outstanding strength and stiffness, making it an ideal choice for functional parts and high-performance prototypes. Post-curing further enhances its mechanical properties and thermal stability, providing reliable performance for complex geometries. Whether for aerospace, precision molds, electronic insulators, or laboratory equipment, this ceramic material meets the highest standards under demanding conditions, delivering solid support for innovative designs and high-performance manufacturing.

  • PA-Like

    Process: SLS or MJF

    Durability, Temperature Resistant

    Nylon is a high-performance engineering polymer with well-balanced properties. It offers high strength, excellent toughness, and outstanding wear resistance, along with superior chemical resistance and thermal stability, ensuring reliable performance even under demanding conditions. Thanks to its lightweight and high reliability, nylon materials are widely used in automotive, medical, aerospace, and consumer products, making them an ideal choice for applications requiring both functionality and durability.

  • 17-4PH stainless steel 3D printing metal material for additive manufacturing — high-strength, corrosion-resistant metal for precision 3D printed components.

    Stainless Steel 17-4PH

    Process: SLM

    Corrosion Resistance, HighStrength, Wear Resistant

    17-4 PH stainless steel is a precipitation-hardening stainless steel known for its excellent hardness and corrosion resistance. Through vacuum solution heat treatment and H900 aging treatment, printed parts can achieve high strength, high hardness, and good wear resistance. 17-4 PH stainless steel is suitable for manufacturing industrial components that require high strength, corrosion resistance, and complex structures, such as aerospace parts, molds, and high-load machinery.
    Disadvantages: Low elongation (≤16% after heat treatment); weak magnetism after heat treatment.

  • Aluminum

    Process: SLM

    HighStrength, CorrosionResistant, Lightweight

    3D printed aluminum alloys, represented by AlSi10Mg and other aluminum-silicon-magnesium alloys, combine lightweight characteristics with excellent mechanical properties. They offer an outstanding strength-to-weight ratio, good corrosion resistance, and thermal conductivity, and demonstrate excellent fatigue and fracture resistance after heat treatment. The material is easy to form, weld, and machine, making it ideal for aerospace, automotive, and tooling applications where lightweight design and structural complexity are critical. Finished parts are typically shot-peened for surface treatment. If you require any other post-processing, please inform our customer service clearly.
    Disadvantages: Poor heat resistance (maximum 120°C); surface roughness around Ra10, with slight pits and visible layer texture.