Compare 3D Printing Materials

Explore and compare 3D printing materials to find the best fit for your project. From durable plastics to flexible resins, our guide highlights key properties like strength, flexibility, and surface finish, helping you choose the right material for prototyping, production, or custom parts.

  • Inconel 718 metal powder for 3D printing

    Inconel 718

    Process: SLM

    Fatigue Resistant, Temperature Resistance, Corrosion Resistance, Strength

    Inconel 718 is known for its outstanding high-temperature strength, creep resistance, and corrosion resistance. The material can withstand operating temperatures above 700°C while maintaining excellent fatigue and fracture resistance. Through additive manufacturing, GH4169 can produce parts with complex geometries and is widely used in aerospace engines, gas turbines, high-temperature molds, and high-performance industrial components.
    Disadvantages: High cost; complex heat treatment process; thin-walled structures require careful design; default surface roughness Ra10–12.

  • 17-4PH stainless steel 3D printing metal material for additive manufacturing — high-strength, corrosion-resistant metal for precision 3D printed components.

    Stainless Steel 17-4PH

    Process: SLM

    Corrosion Resistance, HighStrength, Wear Resistant

    17-4 PH stainless steel is a precipitation-hardening stainless steel known for its excellent hardness and corrosion resistance. Through vacuum solution heat treatment and H900 aging treatment, printed parts can achieve high strength, high hardness, and good wear resistance. 17-4 PH stainless steel is suitable for manufacturing industrial components that require high strength, corrosion resistance, and complex structures, such as aerospace parts, molds, and high-load machinery.
    Disadvantages: Low elongation (≤16% after heat treatment); weak magnetism after heat treatment.

  • Titanium 3D printing metal material for additive manufacturing — lightweight, strong, and corrosion-resistant metal for precision 3D printed components.

    Titanium

    Process: SLM

    Temperature Resistance, Corrosion Resistance, Strength, Lightweight

    3D printed titanium alloys, represented by Ti6Al4V, feature extremely high specific strength and excellent corrosion resistance, while being lightweight and tough. They enable the creation of complex geometries and topology-optimized designs through additive manufacturing, and are widely used in aerospace, medical implants, automotive, and high-performance sports equipment. Titanium alloys also offer good high-temperature performance and biocompatibility, making them an ideal choice for manufacturing high-performance, lightweight components.
    Disadvantages: Poor heat resistance (maximum 120°C); surface roughness around Ra10, with slight pits and visible layer texture.