Injection Molding Materials

Choosing the right injection molding material can make or break your project. Our comprehensive guide helps you quickly compare options based on strength, flexibility, and heat resistance, so you can confidently select the ideal material for prototypes, production parts, or custom designs—ensuring high-quality results every time.

  • PTFE injection molding plastic material — high-performance, chemical-resistant, heat-resistant, and durable plastic for precision-molded components.

    PTFE

    Type: PTFE

    Temperature Resistance, Corrosion Resistance, low friction Coefficient, Aging Resistance

    Polytetrafluoroethylene (PTFE), commonly known as Teflon, is a high-performance fluoropolymer. It is frequently used in mechanical components requiring reduced friction and wear—such as bearings, gears, and piston rings—due to its non-stick properties, low friction characteristics, and self-lubricating capabilities. PTFE also exhibits excellent electrical insulation properties, making it highly suitable for applications like high-frequency cables, high-voltage insulators, and electronic components.

    Additionally, PTFE maintains stable performance during long-term use across an extreme temperature range from -200°C (ultra-low temperature) to 260°C (high temperature), enabling its use in harsh environments such as aerospace systems, deep-sea equipment, and high-temperature industrial apparatus.

  • LDPE plastic material with excellent flexibility and chemical resistance for injection molding and packaging applications.

    LDPE

    Type: LDPE

    Corrosion Resistance, Toughness, Electrical Insulation

    Low-Density Polyethylene (LDPE) is lighter than water, soft and tough, with excellent acid and alkali resistance as well as electrical insulation properties. It is widely used in fields such as packaging, agriculture, electronics, and daily necessities.

  • PET injection molding plastic material — high-strength, chemical-resistant polymer for precision-molded components and industrial applications.

    PET

    Type: PET

    Corrosion Resistance, Strength, High Transparency, Processability

    PET (polyethylene terephthalate) is a common thermoplastic polyester with excellent mechanical properties and strong chemical resistance. It also offers glass-like transparency and luster, with a high light transmittance of about 88–92%, and is widely used in beverage bottles, food packaging, and engineering plastics.

  • Machined ABS part on CNC

    ABS

    Type: ABS

    Strength, Economical, Processability

    ABS (Acrylonitrile-Butadiene-Styrene Copolymer) is a well-balanced engineering plastic with good mechanical properties, excellent impact resistance, and easy processability. These characteristics have led to its widespread application in fields such as consumer electronics, household appliances, automotive industry, and daily necessities.

  • PC polycarbonate resin pellets

    PC

    Type: PC

    Impact Resistance, Processability

    PC (polycarbonate, commonly known as bulletproof glue) is inherently pale yellow or colorless and transparent, featuring hardness, toughness and luster. It boasts prominent advantages: with a light transmittance of 90%, it not only has good mechanical strength but also excellent impact resistance, along with outstanding heat resistance and weatherability.

  • CNC machined TPU automotive seals and gaskets

    TPU

    Type: TPU

    Impact Resistance, Wear Resistance, Chemical Resistant, Aging Resistance

    TPU (Thermoplastic Polyurethane), commonly known as urethane rubber, is a thermoplastic elastomer. It features excellent elasticity, abrasion resistance, and chemical corrosion resistance, and is widely used in applications such as mobile phone cases (soft shells), sports shoe soles, and medical catheters.

  • PA (Nylon) engineering plastic part showcasing high strength, durability, and precision manufacturing

    PA (Nylon)

    Type: PA (Nylon)

    Wear Resistance, Strength, Chemical Resistant, Self-lubrication

    Nylon is a versatile and widely used material in CNC machining due to its exceptional properties. Its high tensile strength, low coefficient of friction, and resistance to wear and abrasion make it an excellent choice for applications requiring durability and reliability, such as gears, bushings, and bearings. Additionally, nylon’s low moisture absorption and good dimensional stability ensure consistent performance even in humid or varying temperature conditions.

    Its ease of machining, coupled with its chemical resistance, also makes it suitable for applications in the automotive, aerospace, and medical industries. With its remarkable combination of properties, nylon stands out as a versatile and reliable material for a diverse range of CNC machining applications.