Injection Molding Materials

Choosing the right injection molding material can make or break your project. Our comprehensive guide helps you quickly compare options based on strength, flexibility, and heat resistance, so you can confidently select the ideal material for prototypes, production parts, or custom designs—ensuring high-quality results every time.

  • HDPE injection molding plastic material — high-density, durable, and chemical-resistant plastic for precision-molded components.

    HDPE

    Type: HDPE

    Corrosion Resistance, Strength, Electrical Insulation

    High-Density Polyethylene (HDPE) is a lightweight, chemically resistant, and high-strength material. It is flexible and tough, commonly used in applications such as food packaging (e.g., food containers), agricultural films, daily necessities (e.g., storage boxes), and water tanks.

  • PP injection molding plastic material — durable, chemical-resistant polypropylene for precision-molded components.

    PP

    Type: PP

    Corrosion Resistant, Strength

    Polypropylene (PP) is a well-balanced thermoplastic characterized by lightweight material, excellent chemical resistance, and good flexibility. Owing to these properties, it finds wide application in fields such as packaging, household appliances, automotive, daily necessities, and medical devices.

  • PC polycarbonate resin pellets

    PC

    Type: PC

    Impact Resistance, Processability

    PC (polycarbonate, commonly known as bulletproof glue) is inherently pale yellow or colorless and transparent, featuring hardness, toughness and luster. It boasts prominent advantages: with a light transmittance of 90%, it not only has good mechanical strength but also excellent impact resistance, along with outstanding heat resistance and weatherability.

  • PEEK polyetheretherketone resin pellets

    PEEK

    Type: PEEK

    Impact Resistance, Chemical Resistant, Food Grade, High Temp, Sterilizable

    PEEK (Polyetheretherketone) is a top-performing thermoplastic engineering plastic, featuring excellent high-temperature resistance, robust mechanical properties, versatile corrosion resistance, top-tier biocompatibility, exceptional dimensional stability, and outstanding electrical insulation and radiation resistance. It is widely used in high-end fields such as aerospace, high-end medical care, and electronic semiconductors.